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Abstract

The dynamics of stationary stochastic processes in space is not exactly analogous to that of stationary stochastic pro-
cesses in the time domain. This is due to the unilateral nature of the time series that is only influenced by past values as
opposed to the dependence in all directions of the spatial process. In this work, we unfold the connection that exits between
the covariance kernel of a multi-dimensional second-order autoregressive random process and its underlying discrete ran-
dom dynamical system. Starting from a discrete random dynamical system, we show that the random process satisfying
that system is governed by the modified Helmholtz equation in the continuous limit. We establish the dependence of
the correlation constant on the grid size of the discretization. We also show that the random forcing term in the continuous
case turns out to be a white noise process. A number of covariance functions are worked out for simple and more complex
geometrical domains with various boundary conditions in multi-dimensions. We use both the discrete and the continuous
systems in our computations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The need for a deep understanding and accurate representation of random inputs in computational stochas-
tic modeling arose from a recent interest of the scientific community in studying uncertainty quantification

(UQ) [1–3]. Random inputs are ubiquitous in engineering applications and include uncertainty in system
parameters, boundary and initial conditions, material properties, source and interaction terms, geometry,
etc. Random fields are used to model spatial data as observed for instance in environmental, ecological, mete-
orological, geological and hydro-geological sciences. Real life one-, two- or three-dimensional spatial random
fields can be modeled by multi-dimensional stochastic processes (see for instance [4] for two-dimensional pro-
cesses). In practice, it will often be the case that a few, if not just single, real realizations of a stochastic process
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are given. Some particular assumptions must be made for the process to empower its numerical simulation
with any practical use. The approximation of stationarity of the process is often regarded as a satisfactory
approximation and make the study of the stationary type of stochastic process worth while. Another (stron-
ger) assumption relates to the knowledge of its covariance matrix.

One approach is to model the random inputs as stochastic processes represented by functionals of idealized
processes which typically correspond to white noise [5–7]. Another approach considers more realistic random
inputs that are correlated random processes (‘‘colored noise’’). The particular case of random parameters, or
fully correlated random processes, is referred as random variables.

One of the simplest and most used random processes is the first-order Markov process [8], which relates to
the Brownian motion of small particles and the diffusion phenomenon. It is a unilateral type of scheme
extended only in one direction and therefore very convenient for time-dependent random inputs and stochastic
initial-valued problems [9]. The covariance kernel associated with that one-dimensional first-order autoregres-
sive process takes an exponential form aexp(�|t1 � t2|/A) where A is the correlation time and a specifies the
strength of the correlation [10]. In the limit of Dt! 0, one obtains the Langevin equation for the Brownian
motion and the covariance function given above. However, realistic models of random series in space require
autoregressive schemes with dependence in all directions [11]. We refer to them as multi-dimensional second-

order stochastic processes. In some cases, it has been shown that schemes of bilateral type in one dimension
can be effectively reduced to a unilateral one [11]. In previous works [12,13], explicit expressions of one-
dimensional covariance kernels associated with periodic second-order autoregressive processes were derived
and represented with a Karhunen–Loeve (KL) decomposition. The KL expansion is a very powerful tool
for representing stationary and non-stationary random processes with explicitly known covariance functions
[14]. In [15], a bilateral stochastic process was numerically represented by a KL expansion in a two dimen-
sional bounded domain.

In this article, we wish to make explicit the connection that exits between the covariance kernel of a multi-
dimensional second-order random process and its underlying discrete random dynamical system. We show
that the random process satisfying the dynamical system is governed by the modified Helmholtz equation in
the continuous limit. This also establishes the dependence of the correlation constant on the grid size of
the discretization. It provides the nature of the random forcing for the discrete and the continuous system.
We first review the one dimensional case and derive the analytic covariance functions of the random processes
for different types of boundary conditions. We then derive the modified Helmholtz equation and solve it to
compute the covariance functions again. We compare analytical and numerical solutions. The procedure is
generalized to higher dimensions in the following section. A number of covariance functions are worked
out for some simple and more complex geometrical domains. Both the discrete and the continuous systems
are used. Finally, we conclude by pointing out the analogy that exist between the eigenfunctions expansion
and the KL representation.
2. Derivation of the covariance kernel and corresponding modified Helmholtz equation in 1D

Let us consider the following discrete set of random variables v1,v2, . . .,vq each associated with one of the q

evenly distributed points x1,x2, . . .,xq on a line. The set of variables ni’s are supposed to be finite independent
identically-distributed (iid) random variables with zero mean and unit variance. The system is assumed to be
periodic. The random variables vi’s are defined by the following (dynamical) system:
vi ¼
c
2
ðviþ1 þ vi�1Þ þ ani with i ¼ 1; 2; . . . ; q; ð1Þ
where we take vq+1 = v1 and v0 = vq because of the periodicity. The parameter c is a constant correlation
coefficient and a is a measure of the strength of the stochastic forcing. This system is called a (bilateral) second-
order autoregressive process. Our goal is to compute the covariance kernel C = Ævivjæ of the random process.
This is done in the limit where Dx! 0 or q!1 for a fixed periodic length of L. First we relate this random
process to the solution of a partial differential equation (the modified Helmholtz equation). Then, we construct
the covariance function C of the process for one spatial dimension and for two and three spatial dimensions
(next section).
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Formally, we can write the solution of Eq. (1) as:
vi ¼
Xq

j¼1

aijnj. ð2Þ
With the periodic assumption, the coefficient matrix of vi is translational invariant. The solution matrix a, in
Eq. (2) will also be translational invariant. It will be defined by q instead of q · q elements. Let us define:
v1 ¼
Xq

j¼1

sjnj; ð3Þ
then
vi ¼
Xq

j¼1

sjnjþi�1 ¼
Xk¼qþi�1

k¼i

sk�iþ1nk. ð4Þ
Substituting Eq. (4) into Eq. (1) and making use of the orthonormal properties of the ni, i.e. Æninjæ = dij, we
have:
s1 ¼
c
2
ðs2 þ sqÞ þ a;

si ¼
c
2
ðsiþ1 þ si�1Þ for i ¼ 2; 3; . . . ; q

ð5Þ
with sq+1 = s1 and s0 = sq because of periodicity.
If q is an even integer (the derivation applies equally well to odd q without lack of generality), i.e., q = 2p, it

is easy to show that:
s2p�k ¼ skþ2 for k ¼ 0; 1; 2 . . . ; p � 2. ð6Þ
The system is then reduced to:
s1 ¼ cs2 þ a;

s2 ¼
c
2
ðs3 þ s1Þ;

..

.

sp ¼
c
2
ðspþ1 þ sp�1Þ;

spþ1 ¼ csp.

ð7Þ
This last set of equations is computed readily, by first calculating:
D1 ¼ 1 and Dk ¼ 2� c2

Dk�1

for k ¼ 2; 3; . . . ; p; ð8Þ
and then:
s1 ¼ a 1� c2

Dp

� �
and sk ¼

c
Dp�kþ2

sk�1 for k ¼ 2; 3; . . . ; p þ 1.

�
ð9Þ
Knowing si for i = 1,2, . . .,q, one can then reconstruct the a matrix in Eq. (2) and compute the covariance
matrix:
Cij ¼ hvivji ¼
Xq

k¼1

aikajk ¼
Xq

k¼1

skskþji�jj. ð10Þ
Since the system is translational invariant, i.e., the process is stationary, Cii is a constant. Let us consider
the normalized covariance matrix Cij/Cii (we set s1 = 1). Now c is the only free parameter. We need to
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find a functional relationship between c and Dx such that the resulting covariance matrix is independent of
the grid size as Dx! 0 (or q!1). This is the case for:
c ¼ exp � 1

2

Dx
A

� �2
" #

� 1� 1

2

Dx
A

� �2

; ð11Þ
where A is an arbitrary constant with a dimension of length and is defined as the correlation length of the
random process. With that equation, we obtain from Eq. (1):
viþ1 þ vi�1 � 2vi

ðDxÞ2
� vi

A2
¼ �

a 2þ Dx
A

� �� �2

ðDxÞ2
ni ¼ �

2a
c

ni

ðDxÞ2
. ð12Þ
Denoting, in the limit of Dx! 0, the first term as the second derivative of v with respect to x; k ¼ 1
A and the

forcing term by f(x), we can recast Eq. (12) as the modified Helmholtz equation:
d2v
dx2
� k2v ¼ f ðxÞ. ð13Þ
Since f(x) is the limiting form of the set of random variables ni defined on a discrete set of points, we take:
ffiffiffiffiffiffi
Dx
p

ni ¼ f ðxiÞDx; ð14Þ

i.e., f(x) is a white noise process. This requires that a in Eq. (1) scales as (Dx)3/2 in the limit where Dx! 0.

Therefore, Eq. (1) becomes Eq. (13) as Dx! 0 provided that we keep c as given by Eq. (11), and:
a ¼ a1

c
2
ðDxÞ3=2 with a1 to be an arbitrary constant;

hf ðx1Þf ðx2Þi ¼ a2
1dðx1 � x2Þ.

ð15Þ
It is straightforward to solve Eq. (13) directly for the case where v(x) is periodic with period L or for the
case where v(x) vanishes at the end point, i.e., v(0) = v(L) = 0. The solutions for v(x) and the corresponding
normalized covariance functions give:

(1) Periodic boundary conditions:
vðxÞ ¼ 1

2k sinh kL
2

� � Z L

0

dx1f ðx1Þ cosh kðjx� x1j � L=2Þ;

hvðxÞvðyÞi
hv2ðxÞi ¼ fðLk þ kjy � xjðcosh kL� 1Þ þ sinh kLÞ cosh kðy � xÞ

þ ð1� cosh kL� kjy � xj sinh kL� sinh kjy � xjÞg=ðLk þ sinh kLÞ.

ð16Þ
(2) For the case where v(0) = v(L) = 0:
vðxÞ ¼ 1

2k sinhðkLÞ

Z L

0

dx1f ðx1Þ½cosh kðxþ x1 � LÞ � cosh kðjx� x2j � LÞ�;

hvðxÞvðyÞi ¼ 1

8k3sinh2ðkLÞ
½F ðx� yÞ � F ðxþ yÞ�;

ð17Þ
where F(x) ” sinhk|x| � sinhk(|x| � 2L) + k|x|coshk(|x| � 2L) � k(|x| � 2L)cosh kx, here a1 in (15) is set
to 1.

Fig. 1 depicts the covariance function for the periodic case for different values of the ratio between the
domain length L and the correlation length A. The cross points represent the numerical solution given
by Eq. (11) and related equations. The number of grid points used for this plot is m = 500 (here not all
the grid points are plotted) which gives a value of c � 0.9988 (cf. Eq. (11)) for the case with L/A = 50.
The solid lines represent the analytical solutions (cf. Eq. (16)). There is a good agreement between the
numerical and analytical results that suggests the scaling between c and Dx is correct. We have noticed
that the absolute error between the analytical and numerical results for a given grid size, increase for
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Fig. 1. 1D case – periodic: analytical and numerical representations of the covariance kernel. L, domain length; A, correlation length.
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increasing L/A. Moreover, the maximum errors occur in the correlation function region with maximum
gradient, close to the origin. We have also verified (for a given L/A) that the finite difference scheme used
to solve the Helmholtz equation was second-order: indeed the error decreases by a factor four when the
equidistant grid is refined by a factor two (result not shown here).

Fig. 2 shows the variance for the second case where v = 0 at both end points for different values of L/A.
Note in this case that the covariance is a function both of x and y. For brevity, we plot only its values
along the diagonal of the covariance matrix. Therefore, this represents the variance of the process i.e.,
when x = y. The numerical method used here is a simple inversion of the coefficient matrix of v in Eq.
(1). The scaling factor a1 of Eq. (15) is taken to be a1 = 1. Again, the good agreement between analytical
and numerical results shows that both scaling factors in Eqs. (11) and (15) are relevant. The variance
values in Fig. 2 are normalized by the maximum value of the covariance matrix. We list these values
in Table 1.

(3) For the case where v(0) = 0 and v(1) is finite:
v(x) as governed by Eq. (13) can also be found as:
Fig.
vðxÞ ¼ 1

2k

Z 1

0

dx1f ðx1Þ e�kðxþx1Þ � e�kjx�x1j
� �
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2. 1D case – zero-Dirichlet: analytical and numerical representations of the variance. L, domain length; A, correlation length.



Table 1
Domain length L = 1, number of points m = 1024; max(k) = maximum element of the covariance matrix obtained by numerical
computation

L/A Dx c max(k) max(C) max |k � C|

1 9.7656 · 10�4 1.00000 0.0172 0.0172 3.0755 · 10�8

10 9.7656 · 10�4 0.99995 2.4974 · 10�4 2.4975 · 10�4 8.2465 · 10�9

100 9.7656 · 10�4 0.99524 2.4940 · 10�7 8.2699 · 10�10 8.2699 · 10�10

max(C) = maximum element of the analytic covariance matrix obtained from Eq. (16).
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and the corresponding covariance function is:
hvðxÞvðyÞi ¼ 1

4k3
ð1þ kjx� yjÞe�kjx�yj � ð1þ kjxþ yjÞe�kðxþyÞ� �

. ð18Þ
3. Generalization to covariance functions in multi-dimensional domains

The correspondence between the discrete system of a random process governed by Eq. (1) and its contin-
uous limit given by Eq. (13) can be easily extended to higher dimensions. The modified Helmholtz equation
takes the following form:
Dv� k2v ¼ f ðxÞ; ð19Þ

where the Laplacian operator D represents the second-order derivative in multi-dimensions, and the random
forcing term on the right-hand side is a white noise process function of the spatial position vector x and
satisfying:
hf ðx1Þf ðx2Þi ¼ dðx1 � x2Þ. ð20Þ

In two dimensions, the corresponding discrete system, written in its finite difference form, becomes:
Dv ) viþ1;j þ vi�1;j þ vi;jþ1 þ vi;j�1 � 4vij

ðDxÞ2
; ð21Þ
here we assume Dx = Dy. Substituting this in Eq. (19), one obtains
vij ¼
c
4
ðviþ1;j þ vi�1;j þ vi;jþ1 þ vi;j�1Þ þ anigj with i; j ¼ 1; 2; . . . ; q ð22Þ
with
c ¼ exp � 1

4
ðkDxÞ2


 �
;

anigj ¼ �
c
4
ðDxÞ2f ðxi; yjÞ and a ¼ a1

c
4
Dx;

ð23Þ
and n and g are iid random variables with zero mean and unit variance.
Similarly for three-dimensional problems, we will have the following discrete system:
vijk ¼
c
6
ðviþ1;j;k þ vi�1;j;k þ vi;jþ1;k þ vi;j�1;k þ vi;j;kþ1 þ vi;j;k�1Þ þ anigjfk with i; j; k ¼ 1; 2; . . . ; q ð24Þ
with
c ¼ exp � 1

6
ðkDxÞ2


 �
;

anigjfk ¼ �
c
6
ðDxÞ2f ðxi; yj; zkÞ and a ¼ a1

c
6
ðDxÞ1=2

;

hf ðx1Þf ðx2Þi ¼ dðx1 � x2Þ

ð25Þ
and where d is a three-dimensional delta function.
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3.1. Infinite domains

For infinite domains, the covariance function based on the modified Helmholtz equation can be readily
obtained by taking the Fourier transform of Eq. (19). Letting
v̂ðaÞ
f̂ ðaÞ

� �
¼
Z

dnxeia�x vðxÞ
f ðxÞ

� �
; ð26Þ
we obtain:
v̂ðaÞ ¼ � f̂ ðaÞ
a2 þ k2

. ð27Þ
We then invert it and obtain:
vðxÞ ¼
Z

dnx1f ðx1ÞGðx� x1Þ; ð28Þ
where the solution is represented as the convolution of the free space Green’s function G with the forcing
function f. We have:
Gðn; k2Þ ¼ � 1

ð2pÞn
Z

dna
eia�n

a2 þ k2
. ð29Þ
The covariance function is:
hvðxÞvðyÞi ¼
Z

dnx1Gðx� x1ÞGðy � x1Þ ð30Þ
(here we have used the orthogonality property of f).
In the present case, we have:
hvðxÞvðyÞi ¼ 1

2p

� �2n Z
dnx1

Z
dna1

eia1�ðx�x1Þ

a2
1 þ k2

Z
dna2

eia2�ðy�x1Þ

a2
2 þ k2

¼ 1

2p

� �n Z
dna

eia�ðx�yÞ

ða2 þ k2Þ2

¼ o

oðk2Þ
Gðx� y; k2Þ ¼ 1

2k
o

ok
Gðx� y; kÞ; ð31Þ
where the Green’s functions G(n) for one, two and three dimensions are:
G1ðnÞ ¼
�1

2k
e�kjnj; ð32Þ

G2ðnÞ ¼
�1

2p
K0ðkjnjÞ; ð33Þ

G3ðnÞ ¼
�1

4p
1

jnj e
�kjnj. ð34Þ
The covariance functions C(x,y) = Æv(x)v(y)æ becomes:

1. One-dimension:
C1ðx; yÞ ¼
1

4k3
½1þ kjx� yj�e�kjx�yj. ð35Þ
2. Two-dimensions:
C2ðx; yÞ ¼ �
1

4pk
K 00ðkjx� yjÞ � jx� yj ¼ jx� yj

4pk
K1ðkjx� yjÞ. ð36Þ
3. Three-dimensions:
C3ðx; yÞ ¼
1

8pk
e�kjx�yj; ð37Þ



C.H. Su, D. Lucor / Journal of Computational Physics 217 (2006) 82–99 89
where K0(x) and K1(x) are the modified Bessel functions of the zero and first order. We have used
K1ðxÞ ¼ �K 00ðxÞ. The two-dimensional results were obtained by Whittle [11]. Various finite domain applica-
tions can also benefit from this approach.
3.2. Finite domains

For finite domains, we need to solve the modified Helmholtz equation with some proper boundary condi-
tions on the random process at the periphery of the domain. In the following, special attention is given to the
two-dimensional case, as it is often the case that numerical simulations of three-dimensional physical systems
in finite domains involve two-dimensional random inputs such as boundary conditions. For instance, in com-
putational fluid mechanics, one could consider a two-dimensional random inflow boundary condition due to
the turbulent fluctuations of the upstream flow. The uncertainty at the inlet could however vanish at the
boundaries in case of internal flows such as duct or channel flows. From a physical point of view, it is therefore
legitimate to have v = 0 at the boundary, if the random fluctuations are restricted to the interior of the domain
but vanishes outside.

In one or higher dimensions, periodic boundary conditions are also reasonable ones, when the physical sys-
tem is large but the (computational) domain of interest much smaller. We consider next both cases of periodic
and zero Dirichlet boundary conditions.

In order to obtain the solution to Eq. (19), we first solve the following eigenvalue problem for the same
computational domain, i.e.,
D/n � k2
n/n ¼ 0 in V ;

/n ¼ 0 on oV ; or the periodic boundary conditions.

(
ð38Þ
It is easy to show that the eigenvalues k2
n are non-negative and the eigenfunctions form a complete orthog-

onal set. We then use a normalized eigenfunction expansion to represent the functions v(x) and f(x)
as follows:
vðxÞ ¼
X

n

an/nðxÞ;

f ðxÞ ¼
X

n

bn/nðxÞ and bn ¼
Z

dnxf ðxÞ/nðxÞ;
ð39Þ
substituting in Eq. (19) we have:
an ¼ �
1

k2
n þ k2

Z
dnxf ðxÞ/nðxÞ; ð40Þ
and
vðxÞ ¼
Z

dnx1f ðx1ÞGðx; x1; kÞ ð41Þ
with
Gðx; x1; kÞ ¼ �
X

n

/nðxÞ/nðx1Þ
k2

n þ k2
. ð42Þ
The corresponding covariance function is:
Cðx1; x2Þ ¼ hvðx1Þvðx2Þi ¼
X

n

/nðx1Þ/nðx2Þ
ðk2

n þ k2Þ2
¼ 1

2k
o

ok
Gðx1; x2; kÞ. ð43Þ
This has the same form as given in Eq. (31) for the case of infinite domain.
Let us use these formula and revisit the one-dimensional problem already solved by the direct method in the

first section.
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3.2.1. One dimensional case
(1) Periodic case:

Eigenvalues:
k0 ¼ 0; kn ¼
2np

L
for n ¼ 1; 2; . . .
Eigenfunctions:
ffiffiffi
1

L

r
;

ffiffiffi
2

L

r
cos

2np
L

x

ffiffiffi
2

L

r
sin

2np
L

x for n ¼ 1; 2; . . .
Green’s function:
Gðx1; x2; kÞ ¼ � 1

L
1

k2
þ 2

X1
n¼1

cos 2np
L ðx1 � x2Þ

2np
L

� �2 þ k2

" #
¼ � 1

2k sinhðkL=2Þ cosh kðjx1 � x2j � L=2Þ. ð44Þ
Here, we have used the following formula:
1

2
þ
X1
n¼1

cos 2np
L x

1þ 2np
Lk

� �2
¼ Lk

4 sinhðkL=2Þ cosh k jxj � L
2

� �
.

The result checks with that given in Eq. (16).

(2) v(0) = v(L) = 0:
Eigenvalues:
kn ¼
np
L

for n ¼ 1; 2; . . .
Eigenfunctions:
ffiffiffi
2

L

r
sin

np
L

x; for n ¼ 1; 2; . . .
Green’s function:
Gðx1; x2; kÞ ¼ � 2

L
sin np

L x1 sin np
L x2

np
L

� �2 þ k2
¼ � 1

L

X1
n¼1

cos np
L ðx1 � x2Þ � cos np

L ðx1 þ x2Þ
np
L

� �2 þ k2

¼ �1

2k sinh kL
cosh kðjx1 � x2j � LÞ � cosh kðx1 þ x2 � LÞ½ �. ð45Þ
Using the formula from Eq. (43), we obtain a covariance expression identical to the one given in Eq. (17).
3.2.2. Two-dimensional case

Let the 2D domain be a rectangle of size L1 · L2.

(1) Periodic case:
Eigenvalues:
k2
nm ¼

2mp
L1

� �2

þ 2np
L2

� �2

for m; n ¼ 0; 1; 2; . . . ð46Þ
The eigenfunctions for each pair of m, n (not zeros) are fourfold degenerate:
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umn ¼
2ffiffiffiffiffiffiffiffiffi

L1L2

p

cos 2mp
L1
� cos 2np

L2
y;

cos 2mp
L1
� sin 2np

L2
y;

sin 2mp
L1
� cos 2np

L2
y;

sin 2mp
L1
� sin 2np

L2
y.

8>>>>><
>>>>>:

ð47Þ
If either m or n (but not both) is zero, the eigenfunctions are doubly degenerate. They are:ffiffiffiffiffiffiffiffiffis (

um0 ¼

2

L1L2

cos 2mp
L1

x;

sin 2mp
L1

x;

u0n ¼

ffiffiffiffiffiffiffiffiffi
2

L1L2

s
cos 2np

L2
x;

sin 2np
L2

x.

( ð48Þ
If both m, n are zero, there is a single eigenfunction:
u00 ¼
1ffiffiffiffiffiffiffiffiffi

L1L2

p . ð49Þ
The covariance function becomes:
Cðx1; y1; x2; y2Þ ¼
4

L1L2

X1
m¼1

X1
n¼1

cos 2mp
L1
ðx1 � x2Þ � cos 2np

L2
ðy1 � y2Þ

k2
mn þ k2

� �2

þ 2

L1L2

X1
n¼1

cos 2np
L1
ðx1 � x2Þ

2np
L1

� 
2

þ k2


 �2
þ

cos 2np
L2
ðy1 � y2Þ

2np
L2

� 
2

þ k2


 �2

8>>><
>>>:

9>>>=
>>>;
þ 1

L1L2

1

k4
. ð50Þ
(4) v = 0 on the boundary of a rectangle:
Eigenvalues and eigenfunctions:
k2
nm ¼

mp
L1

� �2

þ np
L2

� �2

;

unm ¼
2ffiffiffiffiffiffiffiffiffi

L1L2

p sin
mp
L1

x
� �

sin
np
L2

y
� �
. 3. 2D case – periodic: analytic representation of the covariance kernel C(x1,y1,x2 = 0,y2 = 0); L1 = L2 = 1 and k = 1/A = 1.
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and the corresponding covariance function is
Fig.

Fig. 5.
k = 1/
Cðx1; y1; x2; y2Þ ¼
4

L1L2

X1
m¼1

X1
n¼1

sin mp
L1

x1 sin mp
L1

x2 sin np
L2

y1 sin np
L2

y2

ðk2
nm þ k2Þ2

. ð51Þ
All the above formula for the covariance functions involved convergent infinite or doubly infinite series. If
k = 1/A is large, i.e., when the correlation length is much smaller than the size of the domain, a large number
of terms in the series will be needed to obtain accurate values of C.
4. 2D case – periodic: analytic representation of the covariance kernel C(x1,y1,x2 = 0,y2 = 0); L1 = L2 = 1 and k = 1/A = 10.

2D case – periodic: analytic representation of the covariance kernel C(x1,y1,x2 = 0,y2 = 0); L1 = 1 and L2 = 2. (a) k = 1/A = 1; (b)
A = 10.
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The finite sum approximation of this series is computed. In Fig. 3, we plot C(x1,y1,x2,y2) of Eq. (50) by
taking x2 = y2 = 0, L1 = L2 = 1, and k = 1/A = 1. The values of C are normalized by the maximum value
of C, i.e. C(0, 0;0,0) � 1.0037 in this case. We have used a 101 · 101 grid points and one hundred terms both
for m and n.

Fig. 4 shows a somewhat different covariance kernel for k = 10 this time. In both cases the highest value
happens at the four corners. The center region of the rectangle takes up the smallest value.
Fig. 6. 2D case – periodic: isosurfaces of the analytic representation of the covariance kernel C(x1,y1,x2,y2 = 0); L1 = L2 = 1; k =
1/A = 1.

Fig. 7. 2D case – zero-Dirichlet: analytic representation of the covariance kernel C(x1,y1,x2 = L1/2,y2 = L2/2); L1 = L2 = 1; k = 1/A = 1.



Fig. 8. 2D case – zero-Dirichlet: analytic representation of the covariance kernel C(x1,y1,x2 = L1/2,y2 = L2/2); L1 = L2 = 1; k =
1/A = 10.
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Fig. 5 show the corresponding covariance kernels for L1 = 1 and L2 = 2.
Fig. 6 shows isosurfaces of the covariance function C(x1,y1,x2,y2 = 0) for L1 = L2 = 1 and k = 1. This

figure relates to Fig. 3. We notice that the graph now becomes three-dimensional. It represents the covariance
of an ensemble of points (line) with (x2 2 [0, 1],y2 = 0) with an ensemble of points (surface) with ((x1,y1) 2
[0,1] · [0,1]). The dark surfaces represent the low covariance (darkest surface has a value of C = 0.927) and
the light surfaces represent the large covariance (lightest surface has a value of C = 0.995). One can notice that
the function is translational-invariant as expected.

Figs. 7 and 8 show the covariance kernel with the zero-Dirichlet boundary conditions for k = 1 and k = 10,
respectively. The boundaries are not represented and only the values at the interior points of the domain are
shown. Here, the values of C are normalized by the maximal value of C, i.e. C(L1/2,L2/2;L1/2,L2/2) � 0.0106
and C(L1/2,L2/2;L1/2,L2/2) � 7.945 · 10�4, respectively. In both cases the highest value is now obtained at
the center of the rectangular domain and the covariance tends to zero at the boundaries. The center peak
is sharper for larger k.

4. Numerical computation of the covariance kernels

In Section 2, we have carried out a direct numerical computation for the one-dimensional dynamical system
(see Eq. (1)) and we have compared it with the analytical form (cf. the discussion of Figs. 1 and 2). Here, we
reiterate a similar analysis for the two-dimensional version of the dynamical system (see Eq. (22)).

4.1. Formulation and validation

We first consider the periodic case which results in an easier representation of its covariance matrix because
of the translational-invariant property. The resolution of the modified Helmholtz equation in two-dimensional
domains has been treated in many papers. Traditional fast solvers, when based on the fast Fourier transform
(FFT) [16,17], allow for uniform grids and simple geometry, while iterative methods (multigrid methods and
domain decomposition techniques) handle unstructured grids and complex geometry [18,19]. Here, we do not
necessarily need a very efficient solver but we need a method of discretization that preserves the property of
orthogonality of the random forcing on the right-hand side of the equation (Eq. (20)). We make the choice to
use a finite difference scheme that allows us to treat directly the values of the random process at the grid points.
The modified Helmholtz equation with periodic boundary conditions (Eq. (19)) is discretized on a rectangular
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2D cartesian grid with equidistant grid points using a second-order finite difference scheme (5-point stencil)
and appropriate coefficients (Eqs. (22) and (23)). Following a classical finite difference representation, the ran-
dom variables vij at the grid points are ordered and numbered in a single array sequence of size n1 · n2, where
n1 and n2 are the number of internal grid points along each direction respectively. Taking into account the
periodicity at the boundaries, we construct the corresponding coefficient matrix of the vij. It takes the form
of the following block matrix of size n2 · n2 blocks:
B ¼

a b 0 0 . . . 0 b

b a b 0 . . . 0 0

0 b a b . . . 0 0

0 0 0 0 . . . a b

b 0 0 0 . . . b a

0
BBBBBB@

1
CCCCCCA
; ð52Þ
where each block is a matrix of size n1 · n1 elements. The diagonal block a is:
a ¼

1 � c
4

0 0 . . . 0 � c
4

� c
4

1 � c
4

0 . . . 0 0

0 � c
4

1 � c
4

. . . 0 0

0 0 0 0 . . . 1 � c
4

� c
4

0 0 0 . . . � c
4

1

0
BBBBBB@

1
CCCCCCA
; ð53Þ
and the block b is:
b ¼
� c

4
0 0 . . . 0

0 � c
4

0 . . . 0

0 0 0 . . . � c
4

0
B@

1
CA. ð54Þ
Once the matrix of coefficients is inverted, we use the orthogonality property of the right-hand side (see Eq. (20))
to compute readily the covariance matrix of the solution. The computational advantage of this approach is that
the white noise forcing does not need to be explicitly generated to compute the covariance. In order to maintain
this efficiency, other numerical schemes (including numerical schemes based on unstructured grids) should be
used as long as they preserve this property. Bearing in mind, the scaling relationships given in Eq. (23) for
the two-dimensional case, we compare this numerical solution with the analytic solution obtained in the previ-
ous section. Fig. 9 shows the absolute error between the covariance obtained from the analytical approach and
the numerical approach. The error is almost uniform over the domain with very small fluctuations. It was ver-
ified that the numerical solution approaches the analytic solution when the computational grid is refined.

4.2. Application to complex geometries

The numerical approach adopted above can be used for more complex geometries. As a first example, we
consider now a L-shaped two-dimensional domain. The computational domain is the unit square with the
[0,L1/2] · [0,L2/2] subdomain removed. Here, we solve the modified Helmholtz equation with zero Dirichlet
boundary conditions at the boundaries of the L-shaped domain. We use the same numerical technique as
described in the previous paragraph to discretize the domain and compute the covariance kernel. Fig. 10
shows the covariance kernel C(x1,y1,x2 = 3L1/4,y2 = 3L2/4) for k = 1 (a) and k = 10 (b) with L1 = L2 = 1
for both cases. The choice of the point (x2 = 3L1/4,y2 = 3L2/4) is arbitrary. Here, there are 2581 grid points
distributed on an equidistant L-shaped cartesian grid (Dx = Dy = L1/60). For each case, the values of C are
normalized by the maximum value of C over the domain, i.e. C(3L1/4,3L2/4;3L1/4,3L2/4) � 4.61 · 10�3 for
(a) and C(3L1/4,3L2/4;3L1/4,3L2/4) � 7.79 · 10�4 for (b). As expected, the covariance values decay faster
over the domain, away from the chosen point, for larger k.

Our second example is a hole-shaped two-dimensional domain. The physical domain is the unit square with
the {(x1 � L1)2 + (y1 � L2)2 < R2} subdomain disk removed. The computational domain consists in the inter-
section between a uniform cartesian grid on the unit square and the disk geometry. Only the nodes of the grid



Fig. 10. L-shaped 2D case – zero-Dirichlet: numerical representation of the covariance kernel C(x1,y1,x2 = 3L1/4,y2 = 3L2/4);
L1 = L2 = 1. (a) k = 1/A = 1; (b) k = 1/A = 10.

Fig. 9. 2D case – periodic: covariance kernel error between numerical and analytical solutions C(x1,y1,x2 = 0,y2 = 0); L1 = L2 = 1;
k =1/A = 1.
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located outside of the disk are conserved. With this approach, the circular geometry is only approximated. The
accuracy of the approximation is related to the number of grid points in each direction.

We solve again the modified Helmholtz equation with zero Dirichlet boundary conditions at the external
and internal boundaries of the computational domain. We use the same numerical technique as described
in the previous paragraph to construct the linear system and compute the covariance kernel. Here, the prob-
lem being a purely diffusive problem and the grid resolution being sufficiently fine, the effect of the grid irreg-
ularities on the solution is minor. We mention that a non-uniform grid (more adapted to the geometry) could
be used in combination with a mapping function to transform it to a uniform grid. However, the accuracy of
the solution on the non-uniform grid will depend strongly on the transformation. Fig. 11 shows the covariance
kernel C(x1,y1,x2 = L1/4,y2 = 3L2/4) for k = 1 (a) and k = 10 (b) with L1 = L2 = 1 for both cases. The radius
of the internal boundary is R = L1/10. Here, there are 7488 grid points distributed on an equidistant cartesian



Fig. 11. Hole-shaped 2D case – zero-Dirichlet: numerical representation of the covariance kernel C(x1,y1,x2 = L1/4,y2 = 3L2/4);
L1 = L2 = 1. (a) L1/A = 1; (b) L1/A = 10.
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grid (Dx = Dy = L1/90). For each case, the values of C are normalized by the maximum value of C over the
domain, i.e. C(L1/4,3L2/4;L1/4,3L2/4) � 3.68 · 10�3 for (a) and C(L1/4,3L2/4;L1/4,3L2/4) � 7.65 · 10�4 for
(b). As expected, the covariance values decay faster over the domain, away from the chosen point, for larger k.

5. Fourier series expansions and Karhunen–Loeve representation of a random process

In the eigenfunction expansion of the random process in Section 4, the sine and cosine functions come in
predominantly. This is no surprise for the shape of the domain we considered there. One will expect that the
eigenfunction expansion is really just the Fourier series expansion. Let us elucidate this point further by using
the one-dimensional case. We represent a random process as a Fourier series:
vðxÞ ¼ a0ffiffiffi
2
p n0 þ

X1
n¼1

an cos
2np
T

x
� �

nn þ bn sin
2np
T

x
� �

gn


 �
; ð55Þ
where nn and gn are iid random variables as seen before. Then we find for the covariance function:
hvðx1Þvðx2Þi ¼
a2

0

2
þ 1

2

X1
n¼1

ða2
n þ b2

nÞ cos
2np
T
ðx1 � x2Þ þ ða2

n � b2
nÞ cos

2np
T
ðx1 þ x2Þ


 �
. ð56Þ
This defines the covariance functions as the cosine series. For the case that v(0) = v(L) = 0, we have an = 0.
Taking the period T = 2L, we have:
hvðx1Þvðx2Þi ¼
1

2

X1
n¼1

b2
n cos

np
L
ðx1 � x2Þ � cos

np
L
ðx1 þ x2Þ

h i
. ð57Þ
Given the covariance function defined in Eq. (17), one can readily find the coefficient b2
n as:
b2
n ¼

2

Lk4

1

1þ np
Lk

� �2
h i2

ð58Þ
which also checks with the expression given in Eq. (44).
Note that this is for the random process which satisfies the dynamical systems given in Eq. (1). The rate of

convergence of the coefficients goes as n�4. It is interesting to ask what kind of covariance function we will get
if we require that the rate of convergence is exponentially fast, say b2

n ¼ an for |a| < 1. Now
X1
n¼1

b2
n cos nh ¼

X1
n¼1

an cos nh ¼ � 1

2
1� 1� a2

1þ a2 � 2a cos h

� �
. ð59Þ
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We find that:
hvðx1Þvðx2Þi ¼
að1� a2Þ sin p

L x1 sin p
L x2

1þ a2 � 2a cos p
L ðx1 � x2Þ

� �
1þ a2 � 2a cos p

L ðx1 þ x2Þ
� � ; ð60Þ
so, as expected, it is an analytic function.
The representation of covariance functions as an infinite series in Eq. (56) or like those in Section 4 offers a

direct representation of the random process v(x) as a Karhunen–Loeve expansion as in the form of Eq. (55).
Taking the covariance function in Eq. (56) as the kernel function for the eigenvalue problem over the interval
L, i.e.,
Z L

0

dx1hvðxÞvðx1Þiwðx1Þ ¼ kwðxÞ ð61Þ
it is easy to see that the eigenvalues and eigenfunctions are:
k0 ¼
a2

0

2
L; w0ðxÞ ¼

1ffiffiffi
L
p ;

knc ¼
a2

n

2
L; wncðxÞ ¼

ffiffiffi
2

L

r
cos

2np
L

x;

kns ¼
b2

n

2
L; wnsðxÞ ¼

ffiffiffi
2

L

r
sin

2np
L

x.

ð62Þ
With this eigenspectrum, Eq. (55) is simply the Karhunen–Loeve expansion. The same thing applies to all the
covariance function obtained through the method of the eigenfunctions expansion done in Section 4.

6. Summary

We have demonstrated that the dynamical systems associated with the second-order stochastic processes
governed by Eqs. (1), (22) and (24) in one-, two- and three-dimensional spaces lead to the modified Helmholtz
equation (19) in the continuous limit of the grid size Dx! 0. Moreover, the correlation constant c is related to
the grid size and the correlation length A. The random forcings f in the discrete dynamical systems and the
continuous analogue partial differential equations are given by Eqs. (14), (15), (23) and (25). We have used the
modified Helmholtz equation to find the covariance functions for three different boundary conditions in one-
dimensional domain. For infinite domains, we also obtained the explicit forms of the covariance functions in
one, two and three dimensions. In Section 3.2, we used the eigenfunctions expansion to construct the covariance
function in finite domains. The method is applicable to any geometry as long as one can obtain the correspond-
ing eigenspectrum of the modified Helmholtz equation. We have worked out two cases explicitly for two-dimen-
sional rectangular domains. In Section 4, we have used a direct numerical method to solve the two dimensional
discrete dynamical systems with periodic boundary conditions or zero-Dirichlet boundary conditions. Simple as
well as more complex geometrical domains have been studied. The results are compared with those obtained by
the method of eigenfunctions expansion. This work should provide practical ways of incorporating spatially
varying random processes into stochastic boundary-valued problems in science and engineering applications.
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